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Abstract
We introduce new representations to formulate quantum mechanics on
non-commutative coordinate space, which explicitly display entanglement
properties between degrees of freedom of different coordinate components and
hence could be called entangled state representations. Furthermore, we derive
unitary transformations between the new representations and the ordinary ones
used in non-commutative quantum mechanics (NCQM). To show the potential
applications of the entangled state representations, a two-dimensional harmonic
oscillator on the non-commutative plane with both coordinate–coordinate and
momentum–momentum couplings is exactly solved.

PACS numbers: 03.65.−w, 03.65.Fd, 03.65.Ud, 02.40.Gh

1. Introduction

As is well known, representations and transformation theories, founded by Dirac [1], play
a basic and important role in quantum mechanics. Many quantum mechanics problems
were solved cleverly by working in specific representations. Some representations, such
as, the coordinate, the momentum, the number representation, as well as the coherent
state representation, are often employed in the literature of ordinary quantum mechanics.
In non-commutative quantum mechanics (NCQM) [2], because of the non-commutativity
of coordinate-component operators, there are no common eigenstates for these different
coordinate operators, and one can hardly construct a coordinate representation in the usual
sense. However, in order to formulate quantum mechanics on a non-commutative space so
that some dynamic problems can be solved, we do need some appropriate representations.
On the other hand, we realize that in NCQM ordinary products are usually replaced by
∗-products between functions on the non-commutative space [3], which is equivalent to
working in a ‘commuting coordinate representation’ (in this representation, the state vectors,
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for example, |x, y〉, are not spontaneously eigenstates of the coordinate operators X̂ and Ŷ in
the non-commutative space; for details, see section 4). Of course, if we have more practical
representations for NCQM, it will be more effective to deal with the dynamic problems in
NCQM.

Noting that although two coordinate-component operators on the non-commutative space
do not commute with each other, the difference of the two coordinate operators indeed commute
with the sum of the relevant two momentum operators, thus we can still employ Einstein–
Podolsky–Rosen’s (EPR) [4] idea to construct entangled states on the non-commutative
space. The problem of entanglement itself is very important in both fundamental and applied
investigation and now is intensively studied [5]. In most of these studies, the variables
describing entanglements are discrete. For the case of continuous variables there exist many
open questions3. It is easy to show that the entangled states with continuum variables are
orthonormal and satisfy completeness relations, therefore they present new representations for
NCQM. The first bipartite entangled state representation of continuum variables is constructed
by one of the authors (H Fan) and J R Klauder [6]. Here we extend the formalism in [6] to
NCQM and investigate some basic properties of the entangled state representations on the non-
commutative space. We also derive explicit unitary operators which connect the entangled state
representations and the ‘commuting coordinate representation’ and transform them into each
other. To show the potential applications of the entangled state representations in NCQM, we
solve exactly the energy level of a two-dimensional harmonic oscillator on a non-commutative
plane with both kinetic coupling and elastic coupling.

The work is arranged as follows. In section 2 we construct the entangled state
representations for NCQM and derive matrix elements of coordinate and momentum operators
in these representations. In order to demonstrate that these states are indeed the entangled
states, we study their Schmidt decompositions in section 3. In section 4 we investigate the
transformation between the ‘commuting coordinate’ and the entangled state representations,
and derive an explicit unitary operator which transforms them into each other. In section 5
we study a two-dimensional harmonic oscillator on a non-commutative plane with both kinetic
coupling and elastic coupling and solve its energy spectrum exactly. The summary and
discussion are presented in section 6.

2. Entangled state representations for NCQM

Without loss of generality and for the sake of simplicity, we only discuss the non-commutative
plane case in what follows. Operators X̂, Ŷ , P̂ x and P̂ y satisfy the following commutation
relations,

[X̂, Ŷ ] = iθ, [X̂, P̂ x] = i, [Ŷ , P̂ y] = i, (1)

and other commutators of these operators are vanishing, where θ is a real parameter reflecting
the non-commutativity of space coordinates, and we take h̄ = 1. Consider the following
operators:

R̂ = X̂ − Ŷ√
2

, P̂ = P̂ x + P̂ y√
2

, Ŝ = X̂ + Ŷ√
2

, K̂ = P̂ x − P̂ y√
2

. (2)

Obviously R̂ and P̂ commute with each other, as well as Ŝ and K̂ commute with each other.
Thus R̂ and P̂ have common eigenstates |η〉, and Ŝ and K̂ have common eigenstates |ξ 〉. Here
η and ξ may be complex numbers (η = η1 + iη2 and ξ = ξ1 + iξ2) and η1, η2, ξ1 and ξ2 are real
numbers.
3 We thank the referee to draw our attention to this fact.
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In order to get explicit expressions of the eigenstates |η〉 and |ξ 〉, we use the following
transformations,

X̂ = x − θ

2
py, Ŷ = y +

θ

2
px, P̂ x = px, P̂ y = py, (3)

where the operators x, y, px and py satisfy ordinary Heisenberg commutation relations,

[x, px] = i, [y, py] = i, (4)

and other commutators of these operators are vanishing. Furthermore, introducing two
independent ordinary bosonic creation and annihilation operators a†, a and b†, b with
commutation relations [a, a†] = 1, [b, b†] = 1, we have

x = a + a†
√

2
, px = a − a†

√
2i

, y = b + b†
√

2
, py = b − b†

√
2i

. (5)

In terms of these creation and annihilation operators, we can express the operators X̂, Ŷ , P̂ x

and P̂ y as

X̂ = a + a†
√

2
− θ(b − b†)

2
√

2i
, P̂ x = a − a†

√
2i

,

Ŷ = b + b†
√

2
+

θ(a − a†)

2
√

2i
, P̂ y = b − b†

√
2i

.

(6)

Thus the operators R̂ and P̂ may be expressed as

R̂ = 1

2
(a + a† − b − b†) − θ

4i
(a − a† + b − b†), P̂ = 1

2i
(a − a† + b − b†). (7)

The common eigenstate |η〉 of R̂ and P̂ can be written as

|η〉 = 1√
π

exp

(
−|η|2

2
+ ηa† − η∗b† + a†b†

)
|00〉, (8)

where |00〉 is a two-mode bosonic vacuum state satisfying a|00〉 = 0 and b|00〉 = 0. It is easy
to see that

1

2
(a + a† − b − b†)|η〉 = η1|η〉, 1

2i
(a − a† + b − b†)|η〉 = η2|η〉, (9)

which leads to

R̂|η〉 =
(

η1 − θ

2
η2

)
|η〉, P̂ |η〉 = η2|η〉. (10)

Here we would like to give an explicit proof of the completeness relation for the eigenstates
|η〉 using a method of integration within ordered product (IWOP) [7]∫ ∞

−∞
d2η|η〉〈η| =

∫ ∞

−∞

d2η

π
: exp(−|η|2 + ηa† − η∗b† + a†b† − a†a − b†b + η∗a − ηb + ab):

=: exp((a† − b)(a − b†) + a†b† + ab − a†a − b†b) := 1, (11)

where d2η ≡ dη1 dη2 and we have used an expression |00〉〈00| =: exp(−a†a − b†b): and the
notation : · · · : stands for taking the normal product of the creation and annihilation operators.
It is easy to derive the inner product of the states |η〉

〈η|η′〉 = δ(2)(η − η′) = δ(η1 − η′
1)δ(η2 − η′

2). (12)

Therefore, the eigenstates |η〉 form an orthonormal and complete set of base vectors and can
be used to expand any other state vector in the related Hilbert space, so these states form a
representation for NCQM.



8412 S Jing et al

Similarly, we may express the operators Ŝ and K̂ as

Ŝ = 1

2
(a + a† + b + b†) +

θ

4i
(a − a† − b + b†), K̂ = 1

2i
(a − a† − b + b†). (13)

The common eigenstate of Ŝ and K̂ is

|ξ 〉 = 1√
π

exp

(
−|ξ |2

2
+ ξa† + ξ ∗b† − a†b†

)
|00〉. (14)

With the aid of two expressions
1

2
(a + a† + b + b†)|ξ 〉 = ξ1|ξ 〉, 1

2i
(a − a† − b + b†)|ξ 〉 = ξ2|ξ 〉, (15)

we have

Ŝ|ξ 〉 =
(

ξ1 +
θ

2
ξ2

)
|ξ 〉, K̂|ξ 〉 = ξ2|ξ 〉. (16)

Also the states |ξ 〉 form an orthonormal and complete set of base vectors∫ ∞

−∞
d2ξ |ξ 〉〈ξ | = 1, 〈ξ |ξ ′〉 = δ(2)(ξ − ξ ′) = δ(ξ1 − ξ ′

1)δ(ξ2 − ξ ′
2), (17)

where d2ξ ≡ dξ1 dξ2.
Thus the eigenstates |η〉 and |ξ 〉 form two representations for quantum mechanics on the

non-commutative plane, respectively. In the next section, we will explain that in fact the states
|η〉 and |ξ 〉 basically are entangled states in the non-commutative plane, so we may call the |η〉
and |ξ 〉 representations as entangled state representations. For the non-commutative quantum
plane, sometimes working in the |η〉 or |ξ 〉 representation is more convenient, so we first need
to know the scalar product of |η〉 and |ξ 〉. With the aid of overcompleteness of coherent states∫

d2z1 d2z2

π2
|z1, z2〉〈z1, z2| = 1, (18)

where |z1, z2〉 is a two-mode canonical coherent state

|z1, z2〉 = |z1〉a|z2〉b = exp
(− 1

2 (|z1|2 + |z2|2)
)

exp(z1a
† + z2b

†)|00〉, (19)

one may simply get

〈η|ξ 〉 =
∫

d2z1 d2z2

π2
〈η|z1, z2〉〈z1, z2|ξ 〉 = 1

2π
ei(η1ξ2−η2ξ1). (20)

Having equation (20), one easily obtains all matrix elements of the basic operators X̂, Ŷ , P̂ x

and P̂ y on the non-commutative plane in the entangled state representation |η〉. To do this, we
only need to evaluate 〈η|Ŝ|η′〉 and 〈η|K̂|η′〉, and obtain

〈η|Ŝ|η′〉 = 〈η|Ŝ
∫

d2ξ |ξ 〉〈ξ |η′〉 = i

(
∂

∂η2
− θ

2

∂

∂η1

)
δ(2)(η − η′), (21)

and

〈η|K̂|η′〉 = 〈η|K̂
∫

d2ξ |ξ 〉〈ξ |η′〉 = −i
∂

∂η1
δ(2)(η − η′). (22)

Thus in the |η〉 representation, we have

〈η|X̂|η′〉 = 1√
2

(
η1 + i∂η2 − θ

2

(
η2 + i∂η1

))
δ(2)(η − η′),

〈η|Ŷ |η′〉 = −1√
2

(
η1 − i∂η2 − θ

2

(
η2 − i∂η1

))
δ(2)(η − η′),

〈η|P̂ x |η′〉 = 1√
2

(
η2 − i∂η1

)
δ(2)(η − η′),

〈η|P̂ y |η′〉 = 1√
2

(
η2 + i∂η1

)
δ(2)(η − η′).

(23)
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Similarly, in the |ξ 〉 representation, we have

〈ξ |X̂|ξ ′〉 = 1√
2

(
ξ1 + i∂ξ2 +

θ

2

(
ξ2 + i∂ξ1

))
δ(2)(ξ − ξ ′),

〈ξ |Ŷ |ξ ′〉 = 1√
2

(
ξ1 − i∂ξ2 +

θ

2

(
ξ2 − i∂ξ1

))
δ(2)(ξ − ξ ′),

〈ξ |P̂ x |ξ ′〉 = 1√
2

(
ξ2 − i∂ξ1

)
δ(2)(ξ − ξ ′),

〈ξ |P̂ y |ξ ′〉 = −1√
2

(
ξ2 + i∂ξ1

)
δ(2)(ξ − ξ ′).

(24)

3. Entanglement properties of the states |η〉 and |ξ〉
From equations (8) and (14) we find that there exists an intrinsic entanglement of different
degrees of freedom corresponding to different coordinate components on a non-commutative
plane. Usually, these states are so-called entangled states, therefore we may name these two
representations as entangled state representations. In order to show this kind of entanglement
more explicitly, let us consider Fourier transform of the state |η〉. Using a familiar expression
for eigenstate |q〉 of coordinate operator x (x|q〉 = q|q〉) in Fock space

|q〉a = 1
4√π

exp

(
−q2

2
+

√
2qa† − a†2

2

)
|0〉, (25)

one can write the Fourier transform of |η〉 as∫ ∞

−∞

dη2√
2π

|η〉 e−iuη2 =
∣∣∣∣u + η1√

2

〉
a

∣∣∣∣u − η1√
2

〉
b

. (26)

Furthermore, if one considers inverse Fourier transform of the above expression, one will get

|η〉 = 1√
π

e−iη1η2

∫ ∞

−∞
dq|q〉a|q −

√
2η1〉b ei

√
2η2q . (27)

This is exactly the well-known Schmidt decomposition of a pure state which expresses that
the pure state cannot be factorized as a direct product of two other states and therefore is an
entangled state. On the other hand, noting the expression for eigenstate |p〉 of momentum
operator p in the Fock space

|p〉a = 1
4√π

exp

(
−p2

2
+ i

√
2pa† +

a†2

2

)
|0〉, (28)

one can also derive∫ ∞

−∞

dη1√
2π

|η〉 eivη1 =
∣∣∣∣v + η2√

2

〉
a

∣∣∣∣−v + η2√
2

〉
b

(29)

in terms of the eigenstates of the momentum operator whose inverse Fourier transform leads
to another standard expression for an entangled state,

|η〉 = 1√
π

e−iη1η2

∫ ∞

−∞
dp|p +

√
2η2〉a|−p〉b e−i

√
2η1p. (30)

For the eigenstate |ξ 〉, using the eigenstate |q〉 of the coordinate operator (equation (25)),
one has similarly∫ ∞

−∞

dξ2√
2π

|ξ 〉 e−iuξ2 =
∣∣∣∣u + ξ1√

2

〉
a

∣∣∣∣u − ξ1√
2

〉
b

. (31)
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Its inverse Fourier transform is the Schmidt decomposition of the state |ξ 〉

|ξ 〉 = 1√
π

eiξ1ξ2

∫ ∞

−∞
dq|q +

√
2ξ1〉a|−q〉b ei

√
2ξ2q . (32)

Of course, in terms of the eigenstate |p〉 of the momentum operator (equation (28)), one can
get ∫ ∞

−∞

dξ1√
2π

|ξ 〉 eivξ1 =
∣∣∣∣v + ξ2√

2

〉
a

∣∣∣∣v − ξ2√
2

〉
b

, (33)

and its inverse transform leads to another Schmidt decomposition of the state |ξ 〉

|ξ 〉 = 1√
π

eiξ1ξ2

∫ ∞

−∞
dp|p〉a|p −

√
2ξ2〉b e−i

√
2ξ1p. (34)

Therefore it is reasonable to call the |η〉 and |ξ 〉 representations as entangled state
representations.

4. Unitary transformations

In the past few years NCQM was discussed extensively from various aspects [8]. The
most popular method of formulating NCQM, in the vast literature, is treating the coordinate
operators (such as X̂ and Ŷ ) as commuting (usually denoting them as x and y respectively), but

introducing ∗θ -product (for instance, in the non-commutative plane, ∗θ ≡ exp
(

iθ
2 (

←−
∂ x

−→
∂ y −←−

∂ y

−→
∂ x)

)
between functions on the non-commutative space to reflect the non-commutativity

of coordinates. For example, using the ∗θ -product, Schrödinger equation

Ĥ (X̂, Ŷ , P̂ x, P̂ y)|ψ〉 = E|ψ〉 (35)

on the non-commutative plane should be written as [9]

Ĥ (x, y, px, py) ∗θ ψ(x, y) = Eψ(x, y) (36)

where ψ(x, y) = 〈x, y|ψ〉, the operators X̂, Ŷ , P̂ x and P̂ y satisfy the commutation relations
(1), and the operators x, y, px and py satisfy the commutation relations (4), respectively.
In fact, in equation (36) the representation |x, y〉 = |x〉a|y〉b has been used, which is the
common eigenstate of the operators x and y (not operators X̂ and Ŷ ), so we would name it
the ‘commuting coordinate representation’. In other words, using the ∗θ -product in NCQM is
equivalent to using the transformations (3), which is also equivalent to using the representation
|x, y〉. In the |x, y〉 representation one can simply write the matrix elements of the operators
X̂, Ŷ , P̂ x and P̂ y on the non-commutative plane:

〈x, y|X̂|x ′, y ′〉 =
(

x +
iθ

2
∂y

)
δ(x − x ′)δ(y − y ′),

〈x, y|Ŷ |x ′, y ′〉 =
(

y − iθ

2
∂x

)
δ(x − x ′)δ(y − y ′),

〈x, y|P̂ x |x ′, y ′〉 = −i∂xδ(x − x ′)δ(y − y ′),

〈x, y|P̂ y |x ′, y ′〉 = −i∂yδ(x − x ′)δ(y − y ′).

(37)

From equation (3) we know that the states |x, y〉 are also common eigenstates of the operators
X̂ + θ

2 P̂ y and Ŷ − θ
2 P̂ x , so there is a unitary transformation between the two representations

(|η〉 and |x, y〉) whose matrix elements may be written as

〈η|x, y〉 = 1√
π

ei(η1−
√

2x)η2δ(x − y −
√

2η1), (38)
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where equation (27) is used. Similarly, using equation (32), one can get matrix elements of
the transformation between another two representations (|ξ 〉 and |x, y〉)

〈ξ |x, y〉 = 1√
π

e−i(ξ1−
√

2y)ξ2δ(x + y −
√

2ξ1). (39)

Using the completeness relations (11), (17) and
∫

dx dy|x, y〉〈x, y| = 1, one can easily see
that equations (38) and (39) indeed present the unitary transformations between the entangled
state representations and the ‘commuting coordinate representation’ |x, y〉.

In order to get a clear form of the unitary transformation between the |η〉 and the |x, y〉
representations, let us consider the following integration built from the entangled state |η〉 and
the two-mode commuting coordinate eigenstate |x, y〉:

U =
∫

d2η|x, y〉〈η||x= η1+η2√
2

,y= η2−η1√
2

=
∫

dη1 dη2

π
exp

(
−x2

2
− y2

2
+

√
2xa† +

√
2yb† − a†2

2
− b†2

2

)

× |00〉〈00| exp

(
−|η|2

2
+ η∗a − ηb + ab

)∣∣∣∣
x= η1+η2√

2
,y= η2−η1√

2

. (40)

Here, for simplicity, we have taken all parameters in the ordinary harmonic oscillator
expressions (i.e., m, ω) equal to 1. Using the trick in the calculation of equation (11),
we obtain

U =: exp

(
−1 + i

2
(a†a + b†b + a†b + b†a)

)
:, (41)

where the result of the integration is expressed in terms of the normal ordered product. To
show the unitary property of the operator U more clearly, introducing an operator eirS with
S = a†a + b†b + a†b + b†a, we have [S, a†] = a† + b† and [S, b†] = a† + b†, which lead to

eirSa† e−irS = e2ir + 1

2
a† +

e2ir − 1

2
b†, eirSb† e−irS = e2ir − 1

2
a† +

e2ir + 1

2
b†, (42)

and further

eirS = eirS
∞∑

n,m=0

|n,m〉〈n,m|

= eirS
∞∑

n,m=0

a†nb†m
√

n!m!
|00〉〈00| anbm

√
n!m!

=: exp

(
−1 − e2ir

2
S

)
: . (43)

When choosing r = −π/4, we have

U = exp
(
− iπ

4
(a†a + b†b + a†b + b†a)

)
, (44)

which is unitary clearly. From equation (44), it is easy to obtain

Ua†U † = 1 − i

2
a† − 1 + i

2
b†, Ub†U † = −1 + i

2
a† +

1 − i

2
b†, (45)

which lead to

U |η〉 = |x, y〉|x= η1+η2√
2

,y= η2−η1√
2

, U |x, y〉 = |η∗〉|η1= x−y√
2

,η2= x+y√
2
. (46)

Thus U indeed transform the state |η〉 to the state |x, y〉 and vice versa. In the |η〉 representation
one can calculate the following matrix element of the operator U, 〈η|U |ζ 〉, where ζ = ζ1 + iζ2.
Using equation (46) one has

〈η|U |ζ 〉 = 〈η|x, y〉|
x= ζ1+ζ2√

2
,y= ζ2−ζ1√

2
= 1√

π
ei(η1−ζ1−ζ2)η2δ(

√
2ζ1 −

√
2η1). (47)
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If one further takes ζ1 = (x − y)/
√

2 and ζ2 = (x + y)/
√

2, equation (47) will lead to
equation (38) exactly. This means that equation (38) is just a matrix element of the unitary
operator U in the entangled state representation. Similarly, one can find out the unitary
transformation between the |ξ 〉 and the |x, y〉 representations and endow equation (39) with
the same explanation.

Having the unitary transformation (38), and using

〈η|F̂ |η′〉 =
∫

dx dy dx ′ dy ′〈η|x, y〉〈x, y|F̂ |x ′, y ′〉〈x ′, y ′|η′〉, (48)

or

〈x, y|F̂ |x ′, y ′〉 =
∫

d2η d2η′〈x, y|η〉〈η|F̂ |η′〉〈η′|x ′, y ′〉, (49)

one may get the matrix elements of any operator F̂ in one representation, if one knows F̂ in
another representation. For example, taking F̂ = P̂ x , one has

〈η|P̂ x |η′〉 =
∫

dx dy dx ′ dy ′

π
ei(η1−

√
2x)η2δ(x − y −

√
2η1)(−i∂x)δ(x − x ′)δ(y − y ′)

× e−i(η′
1−

√
2x ′)η′

2δ(x ′ − y ′ −
√

2η′
1)

= eiη1(η2−η′
2)

(√
2η2 − i

∂

∂
√

2η1

)
δ(η1 − η′

1)δ(η2 − η′
2)

= 1√
2

(
η2 − i∂η1

)
δ2(η − η′) (50)

which exactly coincides with equation (23). Similarly, one also has

〈η|P̂ y |η′〉 = eiη1(η2−η′
2)

(
i

∂

∂
√

2η1

)
δ(η1 − η′

1)δ(η2 − η′
2)

= 1√
2

(
η2 + i∂η1

)
δ2(η − η′). (51)

Noting that

x ei(η1−
√

2x)η2 = 1√
2

(
η1 + i∂η2

)
ei(η1−

√
2x)η2 , (52)

one can obtain other two expressions of equation (23). Of course, with the aid of the unitary
transformation (39), from equation (37) one may get equation (24).

Therefore, we derive the unitary transformations which change the |x, y〉 representation
to the |η〉 (or similarly to the |ξ 〉) representation and vice versa.

5. An example of a coupled harmonic oscillator

It is well known that representation plays a basic role in quantum mechanics like the coordinate
systems in geometry. In section 2 we introduced the entangled state representations |η〉 and |ξ 〉,
which are related to the |x, y〉 representation by unitary transformations as shown in section 4.
In the |η〉 or |ξ 〉 representation one can also solve the Schrödinger equation of NCQM as in
the |x, y〉 representation, and sometimes it is more convenient working in the entangled state
representation than in the |x, y〉 representation. To show this, let us study a two-dimensional
harmonic oscillator on the non-commutative plane with both momentum–momentum (kinetic)
coupling and coordinate–coordinate (elastic) coupling. The Hamiltonian is

H = 1

2
P̂ 2

x +
1

2
P̂ 2

y +
1

2
X̂2 +

1

2
Ŷ 2 + κP̂ xP̂ y +

λ

2
(X̂Ŷ + Ŷ X̂), (53)
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where the operators P̂ x, P̂ y, X̂ and Ŷ satisfy the commutation relations (1). After substituting
equation (3) into equation (53) we get the Hamiltonian H in the |x, y〉 representation,

H = 1

2

(
1 +

θ2

4

)
p2

x +
1

2

(
1 +

θ2

4

)
p2

y +
1

2
x2 +

1

2
y2

+

(
κ − λθ2

4

)
pxpy + λxy − θ

2
(xpy − ypx) +

λθ

2
(xpx − ypy), (54)

which includes not only the kinetic and the elastic coupling terms, but also the coordinate–
momentum coupling terms (they are the angular momentum term and the squeezing term,
respectively). It is not an easy task to solve its eigenequation. However, in the |η〉
representation the Hamiltonian H has a simpler form,

H = 1

2

(
1 +

θ2

2
− κ +

λθ2

4

)
p2

1 +
1

2
(1 + λ)p2

2 − θ

2
(1 + λ)p1p2

+
1

2
(1 − λ)η2

1 +
1

2

(
1 +

θ2

2
+ κ − λθ2

4

)
η2

2 − θ

2
(1 − λ)η1η2, (55)

where pi = −i∂/∂ηi (i = 1, 2). In the Hamiltonian (55), only the kinetic and the elastic
coupling terms survive, and it is easier to handle than the form (54). Of course, it is needless
to emphasize that Hamiltonians (54) and (55) are connected via a unitary transformation
described in section 4.

Before diagonalizing H (55), let us introduce the notations to rewrite (55) so that it has a
more familiar form:

m1 =
(

1 +
θ2

2
− κ +

λθ2

4

)−1

, ω1 =
√

(1 − λ)

(
1 +

θ2

2
− κ +

λθ2

4

)
, α = θ

2
(1 + λ),

m2 = (1 + λ)−1, ω2 =
√

(1 + λ)

(
1 +

θ2

2
+ κ − λθ2

4

)
, β = θ

2
(1 − λ).

(56)

In terms of these notations, H (55) becomes

H = p2
1

2m1
+

p2
2

2m2
− αp1p2 +

m1ω
2
1

2
η2

1 +
m2ω

2
2

2
η2

2 − βη1η2. (57)

Now let us introduce a 2 × 2 matrix A whose matrix elements aij will be determined later
(i, j = 1, 2). If we use 
p to denote the two-dimensional momentum (p1, p2), one can write

̃p = A 
p = (p̃1, p̃2) with p̃i = aijpj , and inversely, pi = bij p̃j , where bij are the elements
of the inverse matrix of A. Consider the following transformation

V =
√

det A
∫

d 
p|A 
p〉〈 
p| (58)

in the Hilbert space spanned by two-mode momentum eigenstates | 
p〉, which is unitary clearly,

V V † = det A
∫

d 
p d 
p′|A 
p〉〈 
p| 
p′〉〈A 
p′|

= det A
∫

d 
p|A 
p〉〈A 
p| =
∫

d 
̃p| 
̃p〉〈 
̃p| = 1, (59)

and similarly V †V = 1. In equation (58), | 
p〉 = |p1〉|p2〉 and |pi〉 are the momentum
eigenstates

|pi〉 =
(

1

πmiωi

)1/4

exp

(
− p2

i

2miωi

+ i

√
2

miωi

pia
†
i +

1

2
a
†2
i

)
|0〉i , (60)
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where a
†
i (and ai) are the ordinary bosonic creation (and annihilation) operators

ai = 1

2

(√
miωiηi + i

1√
miωi

pi

)
, a

†
i = 1

2

(√
miωiηi − i

1√
miωi

pi

)
. (61)

It is not difficult to see that V transforms VpiV
† = bijpj and V ηiV

† = ajiηj , because

VpiV
† = det A

∫
d 
p d 
p′|A 
p〉〈 
p|pi | 
p′〉〈A 
p′| =

∫
d 
̃pbij p̃j | 
̃p〉〈 
̃p| = bijpj , (62)

and

V ηiV
† = det A

∫
d 
p d 
p′|A 
p〉i ∂

∂pi

δ( 
p − 
p′)〈A 
p′|. (63)

Furthermore, acting equation (63) from the right-hand side on 〈
η| leads to

〈
η|V ηiV
† = det A

∫
d 
p d 
p′

(
−i

∂

∂pi

exp(iajkpkηj )

)
δ( 
p − 
p′)〈A 
p′| = 〈
η|ajiηj , (64)

which means that V ηiV
† = ajiηj .

Now let us act the unitary transformation V on the Hamiltonian (57) and get

V HV † = 1

2m1
(b11p1 + b12p2)

2 +
1

2m2
(b21p1 + b22p2)

2 − α(b11p1 + b12p2)(b21p1 + b22p2)

+
m1ω

2
1

2
(a11η1 + a21η2)

2 +
m2ω

2
2

2
(a12η1 + a22η2)

2

−β(a11η1 + a21η2)(a12η1 + a22η2). (65)

Then in order to annihilate the coupling terms in equation (65), we set

1

m1
a22a12 +

1

m2
a21a22 + α(a11a22 + a12a21) = 0,

m1ω
2
1a11a21 + m2ω

2
2a12a22 − β(a11a22 + a12a21) = 0.

(66)

From equation (66) we have

a12 = �m1

2α
(
β + αm1m2ω

2
2

)a11, a21 = − �m2

2α
(
β + αm1m2ω

2
1

)a22, (67)

where

� = α
(
ω2

1 − ω2
2

)
+

√
α2

(
ω2

1 − ω2
2

)2
+ 4α2

(
β

m1
+ αm2ω

2
2

) (
β

m2
+ αm1ω

2
1

)
. (68)

Thus equation (65) can be written as

Hd = a2
22

2m1(det A)2

(
1 +

m1m1�

β + αm1m2ω
2
1

+
m1m2�

2

4α2
(
β + αm1m2ω

2
1

)2

)
p2

1

+
a2

11

2m2(det A)2

(
1 − m1m1�

β + αm1m2ω
2
2

+
m1m2�

2

4α2
(
β + αm1m2ω

2
2

)2

)
p2

2

+
a2

11m1ω
2
1

2

(
1 − β�

αω2
1

(
β + αm1m2ω

2
2

) +
m1m2ω

2
2�

2

4α2ω2
1

(
β + αm1m2ω

2
2

)2

)
η2

1

+
a2

22m2ω
2
2

2

(
1 +

β�

αω2
2

(
β + αm1m2ω

2
1

) +
m1m2ω

2
1�

2

4α2ω2
2

(
β + αm1m2ω

2
1

)2

)
η2

2. (69)
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Since

det A = a11a22 − a12a21 = a11a22

(
1 +

m1m2�
2

4α2
(
β + αm1m2ω

2
1

)(
β + αm1m2ω

2
2

)
)

, (70)

if we use the following notations,

T1 = 1 +
m1m2�

2

4α2
(
β + αm1m2ω

2
1

)(
β + αm1m2ω

2
2

) ,

T2 = 1 +
m1m1�

β + αm1m2ω
2
1

+
m1m2�

2

4α2
(
β + αm1m2ω

2
1

)2 ,

T3 = 1 − β�

αω2
1

(
β + αm1m2ω

2
2

) +
m1m2ω

2
2�

2

4α2ω2
1

(
β + αm1m2ω

2
2

)2 ,

T4 = 1 − m1m1�

β + αm1m2ω
2
2

+
m1m2�

2

4α2
(
β + αm1m2ω

2
2

)2 ,

T5 = 1 +
β�

αω2
2

(
β + αm1m2ω

2
1

) +
m1m2ω

2
1�

2

4α2ω2
2

(
β + αm1m2ω

2
1

)2 ,

(71)

and in equation (69), let the coefficients of the terms p2
1

/
2m1 and p2

2

/
2m2 be equal to the

coefficients of the terms m1ω
2
1η

2
1

/
2 and m2ω

2
2η

2
2

/
2 respectively, and denote them as �1 and

�2, we have

a11 = T
−1/2

1 T
1/4

2 T
−1/4

3 , a22 = T
−1/2

1 T
1/4

4 T
−1/4

5 ,

�1 = T −1
1 T

1/2
2 T

1/2
3 , �2 = T −1

1 T
1/2

4 T
1/2

5 .
(72)

Thus we diagonalize the Hamiltonian (55) and obtain

Hd = V HV † = �1ω1
(
a
†
1a1 + 1

2

)
+ �2ω2

(
a
†
2a2 + 1

2

)
, (73)

which gives the energy spectrum of the two-dimensional harmonic oscillator (53) on the
non-commutative plane with both the kinetic and the elastic couplings

En,m = �1ω1
(
n + 1

2

)
+ �2ω2

(
m + 1

2

)
. (74)

This result, to our knowledge, has not been reported in the literature so far. In some special
case, however, it reduces to well-known relevant results. For example, when the coupling
constants κ and λ both vanish, the Hamiltonian (53) describes a two-dimensional harmonic
oscillator without any coupling on the non-commutative plane. Equation (74) reduces to

En,m =
√

1 +
θ2

4
(n + m + 1), (75)

which was derived by many authors in other methods. For instance, equation (75) coincides
with [10].

6. Summary and discussion

In order to develop representation and transformation theory so that one can solve more
dynamic problems for NCQM, in this work we introduce new representations on the non-
commutative space which may be named the entangled state representations, because the state
vectors of these representations are common eigenstates of the difference (or the sum) of
two different coordinate-component operators and the sum (or the difference) of two relevant



8420 S Jing et al

momentum operators, and display some entanglements of different components on the non-
commutative space. Since these state vectors are orthonormal and satisfy the completeness
relation, they form representations to formulate the NCQM. In this work, we find out an explicit
unitary operator which can transform the entangled state representation |η〉 into the ‘commuting
coordinate representation’ |x, y〉 used in the literature on NCQM. A similar unitary operator
between the |ξ 〉 representation and the |x, y〉 representation can also be obtained. To show the
potential applications of new entangled representations, we solve exactly a two-dimensional
harmonic oscillator with both the kinetic and the elastic couplings on the non-commutative
plane. This example shows that some dynamic problems of NCQM may be easily solved in
the entangled state representations.

It is also interesting to generalize the entangled state representations to describe two
particles moving on the non-commutative space. Work in this direction will be presented in a
separate paper.
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